Step |
Hyp |
Ref |
Expression |
1 |
|
19.40 |
|- ( E. x ( ph /\ ps ) -> ( E. x ph /\ E. x ps ) ) |
2 |
|
bj-nnfe |
|- ( F// x ph -> ( E. x ph -> ph ) ) |
3 |
2
|
anim1d |
|- ( F// x ph -> ( ( E. x ph /\ E. x ps ) -> ( ph /\ E. x ps ) ) ) |
4 |
1 3
|
syl5 |
|- ( F// x ph -> ( E. x ( ph /\ ps ) -> ( ph /\ E. x ps ) ) ) |
5 |
|
bj-nnfa |
|- ( F// x ph -> ( ph -> A. x ph ) ) |
6 |
5
|
anim1d |
|- ( F// x ph -> ( ( ph /\ E. x ps ) -> ( A. x ph /\ E. x ps ) ) ) |
7 |
|
19.29 |
|- ( ( A. x ph /\ E. x ps ) -> E. x ( ph /\ ps ) ) |
8 |
6 7
|
syl6 |
|- ( F// x ph -> ( ( ph /\ E. x ps ) -> E. x ( ph /\ ps ) ) ) |
9 |
4 8
|
impbid |
|- ( F// x ph -> ( E. x ( ph /\ ps ) <-> ( ph /\ E. x ps ) ) ) |