Metamath Proof Explorer


Theorem bj-ab0

Description: The class of sets verifying a falsity is the empty set (closed form of abf ). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ab0
|- ( A. x -. ph -> { x | ph } = (/) )

Proof

Step Hyp Ref Expression
1 stdpc4
 |-  ( A. x -. ph -> [ y / x ] -. ph )
2 sbn1
 |-  ( [ y / x ] -. ph -> -. [ y / x ] ph )
3 1 2 syl
 |-  ( A. x -. ph -> -. [ y / x ] ph )
4 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
5 3 4 sylnibr
 |-  ( A. x -. ph -> -. y e. { x | ph } )
6 5 eq0rdv
 |-  ( A. x -. ph -> { x | ph } = (/) )