Metamath Proof Explorer


Theorem bj-ab0

Description: The class of sets verifying a falsity is the empty set (closed form of abf ). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ab0
|- ( A. x -. ph -> { x | ph } = (/) )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( A. x -. ph -> A. y A. x -. ph )
2 stdpc4
 |-  ( A. x -. ph -> [ y / x ] -. ph )
3 sbn
 |-  ( [ y / x ] -. ph <-> -. [ y / x ] ph )
4 2 3 sylib
 |-  ( A. x -. ph -> -. [ y / x ] ph )
5 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
6 4 5 sylnibr
 |-  ( A. x -. ph -> -. y e. { x | ph } )
7 1 6 alrimih
 |-  ( A. x -. ph -> A. y -. y e. { x | ph } )
8 eq0
 |-  ( { x | ph } = (/) <-> A. y -. y e. { x | ph } )
9 7 8 sylibr
 |-  ( A. x -. ph -> { x | ph } = (/) )