Description: Shorter proof of abf (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-abf.1 | |- -. ph |
|
Assertion | bj-abf | |- { x | ph } = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-abf.1 | |- -. ph |
|
2 | bj-ab0 | |- ( A. x -. ph -> { x | ph } = (/) ) |
|
3 | 2 1 | mpg | |- { x | ph } = (/) |