Metamath Proof Explorer


Theorem bj-abv

Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-abv
|- ( A. x ph -> { x | ph } = _V )

Proof

Step Hyp Ref Expression
1 trud
 |-  ( ( ph /\ ph ) -> T. )
2 simpl
 |-  ( ( ph /\ T. ) -> ph )
3 1 2 impbida
 |-  ( ph -> ( ph <-> T. ) )
4 3 alimi
 |-  ( A. x ph -> A. x ( ph <-> T. ) )
5 abbi1
 |-  ( A. x ( ph <-> T. ) -> { x | ph } = { x | T. } )
6 4 5 syl
 |-  ( A. x ph -> { x | ph } = { x | T. } )
7 dfv2
 |-  _V = { x | T. }
8 6 7 eqtr4di
 |-  ( A. x ph -> { x | ph } = _V )