Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-abv | |- ( A. x ph -> { x | ph } = _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trud | |- ( ( ph /\ ph ) -> T. ) |
|
2 | simpl | |- ( ( ph /\ T. ) -> ph ) |
|
3 | 1 2 | impbida | |- ( ph -> ( ph <-> T. ) ) |
4 | 3 | alimi | |- ( A. x ph -> A. x ( ph <-> T. ) ) |
5 | abbi1 | |- ( A. x ( ph <-> T. ) -> { x | ph } = { x | T. } ) |
|
6 | 4 5 | syl | |- ( A. x ph -> { x | ph } = { x | T. } ) |
7 | dfv2 | |- _V = { x | T. } |
|
8 | 6 7 | eqtr4di | |- ( A. x ph -> { x | ph } = _V ) |