Metamath Proof Explorer


Theorem bj-abvALT

Description: Alternate version of bj-abv ; shorter but uses ax-8 . (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-abvALT
|- ( A. x ph -> { x | ph } = _V )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( A. x ph -> A. y A. x ph )
2 vexwt
 |-  ( A. x ph -> y e. { x | ph } )
3 1 2 alrimih
 |-  ( A. x ph -> A. y y e. { x | ph } )
4 eqv
 |-  ( { x | ph } = _V <-> A. y y e. { x | ph } )
5 3 4 sylibr
 |-  ( A. x ph -> { x | ph } = _V )