Metamath Proof Explorer


Theorem bj-alrim2

Description: Uncurried (imported) form of bj-alrim . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-alrim2
|- ( ( F/ x ph /\ A. x ( ph -> ps ) ) -> ( ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 bj-alrim
 |-  ( F/ x ph -> ( A. x ( ph -> ps ) -> ( ph -> A. x ps ) ) )
2 1 imp
 |-  ( ( F/ x ph /\ A. x ( ph -> ps ) ) -> ( ph -> A. x ps ) )