Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ax12v |
|- A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
2 |
|
equequ2 |
|- ( y = t -> ( x = y <-> x = t ) ) |
3 |
2
|
imbi1d |
|- ( y = t -> ( ( x = y -> ph ) <-> ( x = t -> ph ) ) ) |
4 |
3
|
albidv |
|- ( y = t -> ( A. x ( x = y -> ph ) <-> A. x ( x = t -> ph ) ) ) |
5 |
4
|
imbi2d |
|- ( y = t -> ( ( ph -> A. x ( x = y -> ph ) ) <-> ( ph -> A. x ( x = t -> ph ) ) ) ) |
6 |
2 5
|
imbi12d |
|- ( y = t -> ( ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) <-> ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) ) |
7 |
6
|
albidv |
|- ( y = t -> ( A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) <-> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) ) |
8 |
1 7
|
mpbii |
|- ( y = t -> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
9 |
|
ax6ev |
|- E. y y = t |
10 |
8 9
|
exlimiiv |
|- A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) |