Metamath Proof Explorer


Theorem bj-ax12v3ALT

Description: Alternate proof of bj-ax12v3 . Uses axc11r and axc15 instead of ax-12 . (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ax12v3ALT
|- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( ph -> A. y ph )
2 axc11r
 |-  ( A. x x = y -> ( A. y ph -> A. x ph ) )
3 ala1
 |-  ( A. x ph -> A. x ( x = y -> ph ) )
4 1 2 3 syl56
 |-  ( A. x x = y -> ( ph -> A. x ( x = y -> ph ) ) )
5 4 a1d
 |-  ( A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
6 axc15
 |-  ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
7 5 6 pm2.61i
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )