Description: The general statement that ax12w proves. (Contributed by BJ, 20-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-ax12w.1 | |- ( ph -> ( ps <-> ch ) ) |
|
bj-ax12w.2 | |- ( y = z -> ( ps <-> th ) ) |
||
Assertion | bj-ax12w | |- ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ax12w.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | bj-ax12w.2 | |- ( y = z -> ( ps <-> th ) ) |
|
3 | 2 | spw | |- ( A. y ps -> ps ) |
4 | 1 | bj-ax12wlem | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) |
5 | 3 4 | syl5 | |- ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) ) |