Metamath Proof Explorer


Theorem bj-ax12w

Description: The general statement that ax12w proves. (Contributed by BJ, 20-Mar-2020)

Ref Expression
Hypotheses bj-ax12w.1
|- ( ph -> ( ps <-> ch ) )
bj-ax12w.2
|- ( y = z -> ( ps <-> th ) )
Assertion bj-ax12w
|- ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 bj-ax12w.1
 |-  ( ph -> ( ps <-> ch ) )
2 bj-ax12w.2
 |-  ( y = z -> ( ps <-> th ) )
3 2 spw
 |-  ( A. y ps -> ps )
4 1 bj-ax12wlem
 |-  ( ph -> ( ps -> A. x ( ph -> ps ) ) )
5 3 4 syl5
 |-  ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) )