Metamath Proof Explorer


Theorem bj-ax6e

Description: Proof of ax6e (hence ax6 ) from Tarski's system, ax-c9 , ax-c16 . Remark: ax-6 is used only via its principal (unbundled) instance ax6v . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ax6e
|- E. x x = y

Proof

Step Hyp Ref Expression
1 19.2
 |-  ( A. x x = y -> E. x x = y )
2 1 a1d
 |-  ( A. x x = y -> ( y = z -> E. x x = y ) )
3 bj-ax6elem1
 |-  ( -. A. x x = y -> ( y = z -> A. x y = z ) )
4 bj-ax6elem2
 |-  ( A. x y = z -> E. x x = y )
5 3 4 syl6
 |-  ( -. A. x x = y -> ( y = z -> E. x x = y ) )
6 2 5 pm2.61i
 |-  ( y = z -> E. x x = y )
7 ax6evr
 |-  E. z y = z
8 6 7 exlimiiv
 |-  E. x x = y