Metamath Proof Explorer


Theorem bj-axc10v

Description: Version of axc10 with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 14-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc10v
|- ( A. x ( x = y -> A. x ph ) -> ph )

Proof

Step Hyp Ref Expression
1 ax6v
 |-  -. A. x -. x = y
2 con3
 |-  ( ( x = y -> A. x ph ) -> ( -. A. x ph -> -. x = y ) )
3 2 al2imi
 |-  ( A. x ( x = y -> A. x ph ) -> ( A. x -. A. x ph -> A. x -. x = y ) )
4 1 3 mtoi
 |-  ( A. x ( x = y -> A. x ph ) -> -. A. x -. A. x ph )
5 axc7
 |-  ( -. A. x -. A. x ph -> ph )
6 4 5 syl
 |-  ( A. x ( x = y -> A. x ph ) -> ph )