Metamath Proof Explorer


Theorem bj-biexal2

Description: When ph is substituted for ps , both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019)

Ref Expression
Assertion bj-biexal2
|- ( A. x ( E. x ph -> ps ) <-> ( E. x ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ x E. x ph
2 1 19.21
 |-  ( A. x ( E. x ph -> ps ) <-> ( E. x ph -> A. x ps ) )