Metamath Proof Explorer


Theorem bj-biexal3

Description: When ph is substituted for ps , both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019)

Ref Expression
Assertion bj-biexal3
|- ( A. x ( ph -> A. x ps ) <-> A. x ( E. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 bj-biexal1
 |-  ( A. x ( ph -> A. x ps ) <-> ( E. x ph -> A. x ps ) )
2 bj-biexal2
 |-  ( A. x ( E. x ph -> ps ) <-> ( E. x ph -> A. x ps ) )
3 1 2 bitr4i
 |-  ( A. x ( ph -> A. x ps ) <-> A. x ( E. x ph -> ps ) )