Metamath Proof Explorer


Theorem bj-cbv2hv

Description: Version of cbv2h with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-cbv2hv.1
|- ( ph -> ( ps -> A. y ps ) )
bj-cbv2hv.2
|- ( ph -> ( ch -> A. x ch ) )
bj-cbv2hv.3
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion bj-cbv2hv
|- ( A. x A. y ph -> ( A. x ps <-> A. y ch ) )

Proof

Step Hyp Ref Expression
1 bj-cbv2hv.1
 |-  ( ph -> ( ps -> A. y ps ) )
2 bj-cbv2hv.2
 |-  ( ph -> ( ch -> A. x ch ) )
3 bj-cbv2hv.3
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
4 biimp
 |-  ( ( ps <-> ch ) -> ( ps -> ch ) )
5 3 4 syl6
 |-  ( ph -> ( x = y -> ( ps -> ch ) ) )
6 1 2 5 bj-cbv1hv
 |-  ( A. x A. y ph -> ( A. x ps -> A. y ch ) )
7 equcomi
 |-  ( y = x -> x = y )
8 biimpr
 |-  ( ( ps <-> ch ) -> ( ch -> ps ) )
9 7 3 8 syl56
 |-  ( ph -> ( y = x -> ( ch -> ps ) ) )
10 2 1 9 bj-cbv1hv
 |-  ( A. y A. x ph -> ( A. y ch -> A. x ps ) )
11 10 alcoms
 |-  ( A. x A. y ph -> ( A. y ch -> A. x ps ) )
12 6 11 impbid
 |-  ( A. x A. y ph -> ( A. x ps <-> A. y ch ) )