Metamath Proof Explorer


Theorem bj-csbprc

Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-csbprc
|- ( -. A e. _V -> [_ A / x ]_ B = (/) )

Proof

Step Hyp Ref Expression
1 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
2 sbcex
 |-  ( [. A / x ]. y e. B -> A e. _V )
3 2 con3i
 |-  ( -. A e. _V -> -. [. A / x ]. y e. B )
4 3 alrimiv
 |-  ( -. A e. _V -> A. y -. [. A / x ]. y e. B )
5 bj-ab0
 |-  ( A. y -. [. A / x ]. y e. B -> { y | [. A / x ]. y e. B } = (/) )
6 4 5 syl
 |-  ( -. A e. _V -> { y | [. A / x ]. y e. B } = (/) )
7 1 6 eqtrid
 |-  ( -. A e. _V -> [_ A / x ]_ B = (/) )