Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
2 | sbcex | |- ( [. A / x ]. y e. B -> A e. _V ) |
|
3 | 2 | con3i | |- ( -. A e. _V -> -. [. A / x ]. y e. B ) |
4 | 3 | alrimiv | |- ( -. A e. _V -> A. y -. [. A / x ]. y e. B ) |
5 | bj-ab0 | |- ( A. y -. [. A / x ]. y e. B -> { y | [. A / x ]. y e. B } = (/) ) |
|
6 | 4 5 | syl | |- ( -. A e. _V -> { y | [. A / x ]. y e. B } = (/) ) |
7 | 1 6 | syl5eq | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |