Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-csb |  |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B } | |
| 2 | sbcex | |- ( [. A / x ]. y e. B -> A e. _V ) | |
| 3 | 2 | con3i | |- ( -. A e. _V -> -. [. A / x ]. y e. B ) | 
| 4 | 3 | alrimiv | |- ( -. A e. _V -> A. y -. [. A / x ]. y e. B ) | 
| 5 | bj-ab0 |  |-  ( A. y -. [. A / x ]. y e. B -> { y | [. A / x ]. y e. B } = (/) ) | |
| 6 | 4 5 | syl |  |-  ( -. A e. _V -> { y | [. A / x ]. y e. B } = (/) ) | 
| 7 | 1 6 | eqtrid | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |