Metamath Proof Explorer


Theorem bj-dfnnf2

Description: Alternate definition of df-bj-nnf using only primitive symbols ( -> , -. , A. ) in each conjunct. (Contributed by BJ, 20-Aug-2023)

Ref Expression
Assertion bj-dfnnf2
|- ( F// x ph <-> ( ( ph -> A. x ph ) /\ ( -. ph -> A. x -. ph ) ) )

Proof

Step Hyp Ref Expression
1 df-bj-nnf
 |-  ( F// x ph <-> ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) )
2 eximal
 |-  ( ( E. x ph -> ph ) <-> ( -. ph -> A. x -. ph ) )
3 2 anbi2ci
 |-  ( ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) <-> ( ( ph -> A. x ph ) /\ ( -. ph -> A. x -. ph ) ) )
4 1 3 bitri
 |-  ( F// x ph <-> ( ( ph -> A. x ph ) /\ ( -. ph -> A. x -. ph ) ) )