Description: Remove dependency on ax-13 from dtru . (Contributed by BJ, 31-May-2019)
TODO: This predates the removal of ax-13 in dtru . But actually, sn-dtru is better than either, so move it to Main with sn-el (and determine whether bj-dtru should be kept as ALT or deleted).
(Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dtru | |- -. A. x x = y |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el | |- E. w x e. w |
|
2 | ax-nul | |- E. z A. x -. x e. z |
|
3 | sp | |- ( A. x -. x e. z -> -. x e. z ) |
|
4 | 2 3 | eximii | |- E. z -. x e. z |
5 | exdistrv | |- ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) ) |
|
6 | 1 4 5 | mpbir2an | |- E. w E. z ( x e. w /\ -. x e. z ) |
7 | ax9 | |- ( w = z -> ( x e. w -> x e. z ) ) |
|
8 | 7 | com12 | |- ( x e. w -> ( w = z -> x e. z ) ) |
9 | 8 | con3dimp | |- ( ( x e. w /\ -. x e. z ) -> -. w = z ) |
10 | 9 | 2eximi | |- ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z ) |
11 | 6 10 | ax-mp | |- E. w E. z -. w = z |
12 | equequ2 | |- ( z = y -> ( w = z <-> w = y ) ) |
|
13 | 12 | notbid | |- ( z = y -> ( -. w = z <-> -. w = y ) ) |
14 | ax7 | |- ( x = w -> ( x = y -> w = y ) ) |
|
15 | 14 | con3d | |- ( x = w -> ( -. w = y -> -. x = y ) ) |
16 | 15 | spimevw | |- ( -. w = y -> E. x -. x = y ) |
17 | 13 16 | syl6bi | |- ( z = y -> ( -. w = z -> E. x -. x = y ) ) |
18 | ax7 | |- ( x = z -> ( x = y -> z = y ) ) |
|
19 | 18 | con3d | |- ( x = z -> ( -. z = y -> -. x = y ) ) |
20 | 19 | spimevw | |- ( -. z = y -> E. x -. x = y ) |
21 | 20 | a1d | |- ( -. z = y -> ( -. w = z -> E. x -. x = y ) ) |
22 | 17 21 | pm2.61i | |- ( -. w = z -> E. x -. x = y ) |
23 | 22 | exlimivv | |- ( E. w E. z -. w = z -> E. x -. x = y ) |
24 | 11 23 | ax-mp | |- E. x -. x = y |
25 | exnal | |- ( E. x -. x = y <-> -. A. x x = y ) |
|
26 | 24 25 | mpbi | |- -. A. x x = y |