Metamath Proof Explorer


Theorem bj-dtru

Description: Remove dependency on ax-13 from dtru . (Contributed by BJ, 31-May-2019)

TODO: This predates the removal of ax-13 in dtru . But actually, sn-dtru is better than either, so move it to Main with sn-el (and determine whether bj-dtru should be kept as ALT or deleted).

(Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-dtru
|- -. A. x x = y

Proof

Step Hyp Ref Expression
1 el
 |-  E. w x e. w
2 ax-nul
 |-  E. z A. x -. x e. z
3 sp
 |-  ( A. x -. x e. z -> -. x e. z )
4 2 3 eximii
 |-  E. z -. x e. z
5 exdistrv
 |-  ( E. w E. z ( x e. w /\ -. x e. z ) <-> ( E. w x e. w /\ E. z -. x e. z ) )
6 1 4 5 mpbir2an
 |-  E. w E. z ( x e. w /\ -. x e. z )
7 ax9
 |-  ( w = z -> ( x e. w -> x e. z ) )
8 7 com12
 |-  ( x e. w -> ( w = z -> x e. z ) )
9 8 con3dimp
 |-  ( ( x e. w /\ -. x e. z ) -> -. w = z )
10 9 2eximi
 |-  ( E. w E. z ( x e. w /\ -. x e. z ) -> E. w E. z -. w = z )
11 6 10 ax-mp
 |-  E. w E. z -. w = z
12 equequ2
 |-  ( z = y -> ( w = z <-> w = y ) )
13 12 notbid
 |-  ( z = y -> ( -. w = z <-> -. w = y ) )
14 ax7
 |-  ( x = w -> ( x = y -> w = y ) )
15 14 con3d
 |-  ( x = w -> ( -. w = y -> -. x = y ) )
16 15 spimevw
 |-  ( -. w = y -> E. x -. x = y )
17 13 16 syl6bi
 |-  ( z = y -> ( -. w = z -> E. x -. x = y ) )
18 ax7
 |-  ( x = z -> ( x = y -> z = y ) )
19 18 con3d
 |-  ( x = z -> ( -. z = y -> -. x = y ) )
20 19 spimevw
 |-  ( -. z = y -> E. x -. x = y )
21 20 a1d
 |-  ( -. z = y -> ( -. w = z -> E. x -. x = y ) )
22 17 21 pm2.61i
 |-  ( -. w = z -> E. x -. x = y )
23 22 exlimivv
 |-  ( E. w E. z -. w = z -> E. x -. x = y )
24 11 23 ax-mp
 |-  E. x -. x = y
25 exnal
 |-  ( E. x -. x = y <-> -. A. x x = y )
26 24 25 mpbi
 |-  -. A. x x = y