Metamath Proof Explorer


Theorem bj-dtrucor2v

Description: Version of dtrucor2 with a disjoint variable condition, which does not require ax-13 (nor ax-4 , ax-5 , ax-7 , ax-12 ). (Contributed by BJ, 16-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-dtrucor2v.1
|- ( x = y -> x =/= y )
Assertion bj-dtrucor2v
|- ( ph /\ -. ph )

Proof

Step Hyp Ref Expression
1 bj-dtrucor2v.1
 |-  ( x = y -> x =/= y )
2 ax6ev
 |-  E. x x = y
3 1 necon2bi
 |-  ( x = y -> -. x = y )
4 pm2.01
 |-  ( ( x = y -> -. x = y ) -> -. x = y )
5 3 4 ax-mp
 |-  -. x = y
6 5 nex
 |-  -. E. x x = y
7 2 6 pm2.24ii
 |-  ( ph /\ -. ph )