| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-endval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | bj-endval.x |  |-  ( ph -> X e. ( Base ` C ) ) | 
						
							| 3 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 4 |  | fvexd |  |-  ( ph -> ( ( End ` C ) ` X ) e. _V ) | 
						
							| 5 | 3 4 | strfvnd |  |-  ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) ) | 
						
							| 6 | 1 2 | bj-endval |  |-  ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ph -> ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) ) | 
						
							| 8 |  | basendxnplusgndx |  |-  ( Base ` ndx ) =/= ( +g ` ndx ) | 
						
							| 9 |  | fvex |  |-  ( Base ` ndx ) e. _V | 
						
							| 10 |  | ovex |  |-  ( X ( Hom ` C ) X ) e. _V | 
						
							| 11 | 9 10 | fvpr1 |  |-  ( ( Base ` ndx ) =/= ( +g ` ndx ) -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) = ( X ( Hom ` C ) X ) ) | 
						
							| 12 | 8 11 | mp1i |  |-  ( ph -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) = ( X ( Hom ` C ) X ) ) | 
						
							| 13 | 5 7 12 | 3eqtrd |  |-  ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |