Step |
Hyp |
Ref |
Expression |
1 |
|
bj-endval.c |
|- ( ph -> C e. Cat ) |
2 |
|
bj-endval.x |
|- ( ph -> X e. ( Base ` C ) ) |
3 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
4 |
|
fvexd |
|- ( ph -> ( ( End ` C ) ` X ) e. _V ) |
5 |
3 4
|
strfvnd |
|- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) ) |
6 |
1 2
|
bj-endval |
|- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
7 |
6
|
fveq1d |
|- ( ph -> ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( +g ` ndx ) ) ) |
8 |
|
basendxnplusgndx |
|- ( Base ` ndx ) =/= ( +g ` ndx ) |
9 |
|
fvex |
|- ( +g ` ndx ) e. _V |
10 |
|
ovex |
|- ( <. X , X >. ( comp ` C ) X ) e. _V |
11 |
9 10
|
fvpr2 |
|- ( ( Base ` ndx ) =/= ( +g ` ndx ) -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( +g ` ndx ) ) = ( <. X , X >. ( comp ` C ) X ) ) |
12 |
8 11
|
mp1i |
|- ( ph -> ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( +g ` ndx ) ) = ( <. X , X >. ( comp ` C ) X ) ) |
13 |
5 7 12
|
3eqtrd |
|- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) |