Step |
Hyp |
Ref |
Expression |
1 |
|
bj-endval.c |
|- ( ph -> C e. Cat ) |
2 |
|
bj-endval.x |
|- ( ph -> X e. ( Base ` C ) ) |
3 |
1 2
|
bj-endbase |
|- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |
4 |
3
|
eqcomd |
|- ( ph -> ( X ( Hom ` C ) X ) = ( Base ` ( ( End ` C ) ` X ) ) ) |
5 |
1 2
|
bj-endcomp |
|- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) |
6 |
5
|
eqcomd |
|- ( ph -> ( <. X , X >. ( comp ` C ) X ) = ( +g ` ( ( End ` C ) ` X ) ) ) |
7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
10 |
1
|
3ad2ant1 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
11 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
12 |
|
simp3 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
13 |
|
simp2 |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
14 |
7 8 9 10 11 11 11 12 13
|
catcocl |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) y ) e. ( X ( Hom ` C ) X ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> C e. Cat ) |
16 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> X e. ( Base ` C ) ) |
17 |
|
simpr |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) |
18 |
|
simp3 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> z e. ( X ( Hom ` C ) X ) ) |
19 |
17 18
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> z e. ( X ( Hom ` C ) X ) ) |
20 |
|
simp2 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
21 |
17 20
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> y e. ( X ( Hom ` C ) X ) ) |
22 |
|
simp1 |
|- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
23 |
17 22
|
syl |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> x e. ( X ( Hom ` C ) X ) ) |
24 |
7 8 9 15 16 16 16 19 21 16 23
|
catass |
|- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( ( x ( <. X , X >. ( comp ` C ) X ) y ) ( <. X , X >. ( comp ` C ) X ) z ) = ( x ( <. X , X >. ( comp ` C ) X ) ( y ( <. X , X >. ( comp ` C ) X ) z ) ) ) |
25 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
26 |
7 8 25 1 2
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
27 |
1
|
adantr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
28 |
2
|
adantr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
29 |
|
simpr |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
30 |
7 8 25 27 28 9 28 29
|
catlid |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) x ) = x ) |
31 |
7 8 25 27 28 9 28 29
|
catrid |
|- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = x ) |
32 |
4 6 14 24 26 30 31
|
ismndd |
|- ( ph -> ( ( End ` C ) ` X ) e. Mnd ) |