| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-endval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | bj-endval.x |  |-  ( ph -> X e. ( Base ` C ) ) | 
						
							| 3 | 1 2 | bj-endbase |  |-  ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ph -> ( X ( Hom ` C ) X ) = ( Base ` ( ( End ` C ) ` X ) ) ) | 
						
							| 5 | 1 2 | bj-endcomp |  |-  ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ph -> ( <. X , X >. ( comp ` C ) X ) = ( +g ` ( ( End ` C ) ` X ) ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 8 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 9 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 10 | 1 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) | 
						
							| 11 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) | 
						
							| 12 |  | simp3 |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) | 
						
							| 14 | 7 8 9 10 11 11 11 12 13 | catcocl |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) y ) e. ( X ( Hom ` C ) X ) ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> C e. Cat ) | 
						
							| 16 | 2 | adantr |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> X e. ( Base ` C ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) | 
						
							| 18 |  | simp3 |  |-  ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> z e. ( X ( Hom ` C ) X ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> z e. ( X ( Hom ` C ) X ) ) | 
						
							| 20 |  | simp2 |  |-  ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> y e. ( X ( Hom ` C ) X ) ) | 
						
							| 22 |  | simp1 |  |-  ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) | 
						
							| 23 | 17 22 | syl |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> x e. ( X ( Hom ` C ) X ) ) | 
						
							| 24 | 7 8 9 15 16 16 16 19 21 16 23 | catass |  |-  ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( ( x ( <. X , X >. ( comp ` C ) X ) y ) ( <. X , X >. ( comp ` C ) X ) z ) = ( x ( <. X , X >. ( comp ` C ) X ) ( y ( <. X , X >. ( comp ` C ) X ) z ) ) ) | 
						
							| 25 |  | eqid |  |-  ( Id ` C ) = ( Id ` C ) | 
						
							| 26 | 7 8 25 1 2 | catidcl |  |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) | 
						
							| 27 | 1 | adantr |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) | 
						
							| 28 | 2 | adantr |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) | 
						
							| 30 | 7 8 25 27 28 9 28 29 | catlid |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) x ) = x ) | 
						
							| 31 | 7 8 25 27 28 9 28 29 | catrid |  |-  ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = x ) | 
						
							| 32 | 4 6 14 24 26 30 31 | ismndd |  |-  ( ph -> ( ( End ` C ) ` X ) e. Mnd ) |