Step |
Hyp |
Ref |
Expression |
1 |
|
bj-endval.c |
|- ( ph -> C e. Cat ) |
2 |
|
bj-endval.x |
|- ( ph -> X e. ( Base ` C ) ) |
3 |
|
df-bj-end |
|- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |
4 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
5 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
6 |
5
|
oveqd |
|- ( c = C -> ( x ( Hom ` c ) x ) = ( x ( Hom ` C ) x ) ) |
7 |
6
|
opeq2d |
|- ( c = C -> <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. = <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. ) |
8 |
|
fveq2 |
|- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
9 |
8
|
oveqd |
|- ( c = C -> ( <. x , x >. ( comp ` c ) x ) = ( <. x , x >. ( comp ` C ) x ) ) |
10 |
9
|
opeq2d |
|- ( c = C -> <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. = <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. ) |
11 |
7 10
|
preq12d |
|- ( c = C -> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } = { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) |
12 |
4 11
|
mpteq12dv |
|- ( c = C -> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) |
13 |
|
fvex |
|- ( Base ` C ) e. _V |
14 |
13
|
mptex |
|- ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) e. _V |
15 |
14
|
a1i |
|- ( ph -> ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) e. _V ) |
16 |
3 12 1 15
|
fvmptd3 |
|- ( ph -> ( End ` C ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) |
17 |
|
id |
|- ( x = X -> x = X ) |
18 |
17 17
|
oveq12d |
|- ( x = X -> ( x ( Hom ` C ) x ) = ( X ( Hom ` C ) X ) ) |
19 |
18
|
opeq2d |
|- ( x = X -> <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. = <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. ) |
20 |
17 17
|
opeq12d |
|- ( x = X -> <. x , x >. = <. X , X >. ) |
21 |
20 17
|
oveq12d |
|- ( x = X -> ( <. x , x >. ( comp ` C ) x ) = ( <. X , X >. ( comp ` C ) X ) ) |
22 |
21
|
opeq2d |
|- ( x = X -> <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. = <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. ) |
23 |
19 22
|
preq12d |
|- ( x = X -> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
24 |
23
|
adantl |
|- ( ( ph /\ x = X ) -> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
25 |
|
prex |
|- { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } e. _V |
26 |
25
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } e. _V ) |
27 |
16 24 2 26
|
fvmptd |
|- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |