Metamath Proof Explorer


Theorem bj-equs45fv

Description: Version of equs45f with a disjoint variable condition, which does not require ax-13 . Note that the version of equs5 with a disjoint variable condition is actually sbalex (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-equs45fv.1
|- F/ y ph
Assertion bj-equs45fv
|- ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) )

Proof

Step Hyp Ref Expression
1 bj-equs45fv.1
 |-  F/ y ph
2 1 nf5ri
 |-  ( ph -> A. y ph )
3 2 anim2i
 |-  ( ( x = y /\ ph ) -> ( x = y /\ A. y ph ) )
4 3 eximi
 |-  ( E. x ( x = y /\ ph ) -> E. x ( x = y /\ A. y ph ) )
5 equs5av
 |-  ( E. x ( x = y /\ A. y ph ) -> A. x ( x = y -> ph ) )
6 4 5 syl
 |-  ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) )
7 equs4v
 |-  ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) )
8 6 7 impbii
 |-  ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) )