Metamath Proof Explorer


Theorem bj-equsalvwd

Description: Variant of equsalvw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-equsalvwd.nf0
|- ( ph -> A. x ph )
bj-equsalvwd.nf
|- ( ph -> F// x ch )
bj-equsalvwd.is
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion bj-equsalvwd
|- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) )

Proof

Step Hyp Ref Expression
1 bj-equsalvwd.nf0
 |-  ( ph -> A. x ph )
2 bj-equsalvwd.nf
 |-  ( ph -> F// x ch )
3 bj-equsalvwd.is
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
4 3 pm5.74da
 |-  ( ph -> ( ( x = y -> ps ) <-> ( x = y -> ch ) ) )
5 1 4 albidh
 |-  ( ph -> ( A. x ( x = y -> ps ) <-> A. x ( x = y -> ch ) ) )
6 bj-equsvt
 |-  ( F// x ch -> ( A. x ( x = y -> ch ) <-> ch ) )
7 2 6 syl
 |-  ( ph -> ( A. x ( x = y -> ch ) <-> ch ) )
8 5 7 bitrd
 |-  ( ph -> ( A. x ( x = y -> ps ) <-> ch ) )