Description: Variant of equsalvw . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-equsalvwd.nf0 | |- ( ph -> A. x ph ) |
|
bj-equsalvwd.nf | |- ( ph -> F// x ch ) |
||
bj-equsalvwd.is | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
||
Assertion | bj-equsalvwd | |- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsalvwd.nf0 | |- ( ph -> A. x ph ) |
|
2 | bj-equsalvwd.nf | |- ( ph -> F// x ch ) |
|
3 | bj-equsalvwd.is | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
4 | 3 | pm5.74da | |- ( ph -> ( ( x = y -> ps ) <-> ( x = y -> ch ) ) ) |
5 | 1 4 | albidh | |- ( ph -> ( A. x ( x = y -> ps ) <-> A. x ( x = y -> ch ) ) ) |
6 | bj-equsvt | |- ( F// x ch -> ( A. x ( x = y -> ch ) <-> ch ) ) |
|
7 | 2 6 | syl | |- ( ph -> ( A. x ( x = y -> ch ) <-> ch ) ) |
8 | 5 7 | bitrd | |- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) ) |