Step |
Hyp |
Ref |
Expression |
1 |
|
bj-equsexvwd.nf0 |
|- ( ph -> A. x ph ) |
2 |
|
bj-equsexvwd.nf |
|- ( ph -> F// x ch ) |
3 |
|
bj-equsexvwd.is |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
4 |
|
alinexa |
|- ( A. x ( x = y -> -. ps ) <-> -. E. x ( x = y /\ ps ) ) |
5 |
|
bj-nnfnt |
|- ( F// x ch <-> F// x -. ch ) |
6 |
2 5
|
sylib |
|- ( ph -> F// x -. ch ) |
7 |
3
|
notbid |
|- ( ( ph /\ x = y ) -> ( -. ps <-> -. ch ) ) |
8 |
1 6 7
|
bj-equsalvwd |
|- ( ph -> ( A. x ( x = y -> -. ps ) <-> -. ch ) ) |
9 |
4 8
|
bitr3id |
|- ( ph -> ( -. E. x ( x = y /\ ps ) <-> -. ch ) ) |
10 |
9
|
con4bid |
|- ( ph -> ( E. x ( x = y /\ ps ) <-> ch ) ) |