Metamath Proof Explorer


Theorem bj-equsexvwd

Description: Variant of equsexvw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-equsexvwd.nf0
|- ( ph -> A. x ph )
bj-equsexvwd.nf
|- ( ph -> F// x ch )
bj-equsexvwd.is
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion bj-equsexvwd
|- ( ph -> ( E. x ( x = y /\ ps ) <-> ch ) )

Proof

Step Hyp Ref Expression
1 bj-equsexvwd.nf0
 |-  ( ph -> A. x ph )
2 bj-equsexvwd.nf
 |-  ( ph -> F// x ch )
3 bj-equsexvwd.is
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
4 alinexa
 |-  ( A. x ( x = y -> -. ps ) <-> -. E. x ( x = y /\ ps ) )
5 bj-nnfnt
 |-  ( F// x ch <-> F// x -. ch )
6 2 5 sylib
 |-  ( ph -> F// x -. ch )
7 3 notbid
 |-  ( ( ph /\ x = y ) -> ( -. ps <-> -. ch ) )
8 1 6 7 bj-equsalvwd
 |-  ( ph -> ( A. x ( x = y -> -. ps ) <-> -. ch ) )
9 4 8 bitr3id
 |-  ( ph -> ( -. E. x ( x = y /\ ps ) <-> -. ch ) )
10 9 con4bid
 |-  ( ph -> ( E. x ( x = y /\ ps ) <-> ch ) )