Description: A variant of equsv . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-equsvt | |- ( F// x ph -> ( A. x ( x = y -> ph ) <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.23t | |- ( F// x ph -> ( A. x ( x = y -> ph ) <-> ( E. x x = y -> ph ) ) ) |
|
2 | ax6ev | |- E. x x = y |
|
3 | 2 | a1bi | |- ( ph <-> ( E. x x = y -> ph ) ) |
4 | 1 3 | bitr4di | |- ( F// x ph -> ( A. x ( x = y -> ph ) <-> ph ) ) |