Metamath Proof Explorer


Theorem bj-equsvt

Description: A variant of equsv . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-equsvt
|- ( F// x ph -> ( A. x ( x = y -> ph ) <-> ph ) )

Proof

Step Hyp Ref Expression
1 bj-19.23t
 |-  ( F// x ph -> ( A. x ( x = y -> ph ) <-> ( E. x x = y -> ph ) ) )
2 ax6ev
 |-  E. x x = y
3 2 a1bi
 |-  ( ph <-> ( E. x x = y -> ph ) )
4 1 3 bitr4di
 |-  ( F// x ph -> ( A. x ( x = y -> ph ) <-> ph ) )