Metamath Proof Explorer


Theorem bj-exalbial

Description: Adding a second quantifier is a tranparent operation, ( E. A. case). (Contributed by BJ, 20-Oct-2019)

Ref Expression
Assertion bj-exalbial
|- ( E. x A. x ph <-> A. x ph )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x ph
2 1 19.9
 |-  ( E. x A. x ph <-> A. x ph )