Metamath Proof Explorer


Theorem bj-exalimsi

Description: An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Hypotheses bj-exalimsi.1
|- ( ph -> ( ps -> ch ) )
bj-exalimsi.2
|- ( E. x ph -> ( -. ch -> A. x -. ch ) )
Assertion bj-exalimsi
|- ( E. x ph -> ( A. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 bj-exalimsi.1
 |-  ( ph -> ( ps -> ch ) )
2 bj-exalimsi.2
 |-  ( E. x ph -> ( -. ch -> A. x -. ch ) )
3 2 bj-exalims
 |-  ( A. x ( ph -> ( ps -> ch ) ) -> ( E. x ph -> ( A. x ps -> ch ) ) )
4 3 1 mpg
 |-  ( E. x ph -> ( A. x ps -> ch ) )