Description: An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-exalimsi.1 | |- ( ph -> ( ps -> ch ) ) |
|
bj-exalimsi.2 | |- ( E. x ph -> ( -. ch -> A. x -. ch ) ) |
||
Assertion | bj-exalimsi | |- ( E. x ph -> ( A. x ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-exalimsi.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | bj-exalimsi.2 | |- ( E. x ph -> ( -. ch -> A. x -. ch ) ) |
|
3 | 2 | bj-exalims | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( E. x ph -> ( A. x ps -> ch ) ) ) |
4 | 3 1 | mpg | |- ( E. x ph -> ( A. x ps -> ch ) ) |