Description: A commuted form of exim which is sometimes posited as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-eximcom | |- ( E. x ( ph -> ps ) -> ( A. x ph -> E. x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 | |- ( ph -> ( ( ph -> ps ) -> ps ) ) |
|
2 | 1 | aleximi | |- ( A. x ph -> ( E. x ( ph -> ps ) -> E. x ps ) ) |
3 | 2 | com12 | |- ( E. x ( ph -> ps ) -> ( A. x ph -> E. x ps ) ) |