Metamath Proof Explorer


Theorem bj-hbsb2av

Description: Version of hbsb2a with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 11-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbsb2av
|- ( [ y / x ] A. y ph -> A. x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 sb4av
 |-  ( [ y / x ] A. y ph -> A. x ( x = y -> ph ) )
2 sb6
 |-  ( [ y / x ] ph <-> A. x ( x = y -> ph ) )
3 2 biimpri
 |-  ( A. x ( x = y -> ph ) -> [ y / x ] ph )
4 3 axc4i
 |-  ( A. x ( x = y -> ph ) -> A. x [ y / x ] ph )
5 1 4 syl
 |-  ( [ y / x ] A. y ph -> A. x [ y / x ] ph )