Metamath Proof Explorer


Theorem bj-hbsb3v

Description: Version of hbsb3 with a disjoint variable condition, which does not require ax-13 . (Remark: the unbundled version of nfs1 is given by bj-nfs1v .) (Contributed by BJ, 11-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-hbsb3v.1
|- ( ph -> A. y ph )
Assertion bj-hbsb3v
|- ( [ y / x ] ph -> A. x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 bj-hbsb3v.1
 |-  ( ph -> A. y ph )
2 1 sbimi
 |-  ( [ y / x ] ph -> [ y / x ] A. y ph )
3 bj-hbsb2av
 |-  ( [ y / x ] A. y ph -> A. x [ y / x ] ph )
4 2 3 syl
 |-  ( [ y / x ] ph -> A. x [ y / x ] ph )