Metamath Proof Explorer


Theorem bj-modalb

Description: A short form of the axiom B of modal logic using only primitive symbols ( -> , -. , A. ). (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-modalb
|- ( -. ph -> A. x -. A. x ph )

Proof

Step Hyp Ref Expression
1 axc7
 |-  ( -. A. x -. A. x ph -> ph )
2 1 con1i
 |-  ( -. ph -> A. x -. A. x ph )