Metamath Proof Explorer


Theorem bj-nexdh2

Description: Uncurried (imported) form of bj-nexdh . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-nexdh2
|- ( ( A. x ( ph -> -. ps ) /\ ( ch -> A. x ph ) ) -> ( ch -> -. E. x ps ) )

Proof

Step Hyp Ref Expression
1 bj-nexdh
 |-  ( A. x ( ph -> -. ps ) -> ( ( ch -> A. x ph ) -> ( ch -> -. E. x ps ) ) )
2 1 imp
 |-  ( ( A. x ( ph -> -. ps ) /\ ( ch -> A. x ph ) ) -> ( ch -> -. E. x ps ) )