Metamath Proof Explorer


Theorem bj-nexdt

Description: Closed form of nexd . (Contributed by BJ, 20-Oct-2019)

Ref Expression
Assertion bj-nexdt
|- ( F/ x ph -> ( A. x ( ph -> -. ps ) -> ( ph -> -. E. x ps ) ) )

Proof

Step Hyp Ref Expression
1 nf5r
 |-  ( F/ x ph -> ( ph -> A. x ph ) )
2 bj-nexdh
 |-  ( A. x ( ph -> -. ps ) -> ( ( ph -> A. x ph ) -> ( ph -> -. E. x ps ) ) )
3 1 2 syl5com
 |-  ( F/ x ph -> ( A. x ( ph -> -. ps ) -> ( ph -> -. E. x ps ) ) )