Metamath Proof Explorer


Theorem bj-nfdt

Description: Closed form of nf5d and nf5dh . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-nfdt
|- ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( ( ph -> A. x ph ) -> ( ph -> F/ x ps ) ) )

Proof

Step Hyp Ref Expression
1 bj-nfdt0
 |-  ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( A. x ph -> F/ x ps ) )
2 1 imim2d
 |-  ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( ( ph -> A. x ph ) -> ( ph -> F/ x ps ) ) )