Metamath Proof Explorer


Theorem bj-nnfai

Description: Nonfreeness implies the equivalent of ax-5 , inference form. See nf5ri . (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfai.1
|- F// x ph
Assertion bj-nnfai
|- ( ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 bj-nnfai.1
 |-  F// x ph
2 bj-nnfa
 |-  ( F// x ph -> ( ph -> A. x ph ) )
3 1 2 ax-mp
 |-  ( ph -> A. x ph )