Step |
Hyp |
Ref |
Expression |
1 |
|
bj-nnfbid.1 |
|- ( ph -> F// x ps ) |
2 |
|
bj-nnfbid.2 |
|- ( ph -> F// x ch ) |
3 |
|
bj-nnfim |
|- ( ( F// x ps /\ F// x ch ) -> F// x ( ps -> ch ) ) |
4 |
1 2 3
|
syl2anc |
|- ( ph -> F// x ( ps -> ch ) ) |
5 |
|
bj-nnfim |
|- ( ( F// x ch /\ F// x ps ) -> F// x ( ch -> ps ) ) |
6 |
2 1 5
|
syl2anc |
|- ( ph -> F// x ( ch -> ps ) ) |
7 |
4 6
|
bj-nnfand |
|- ( ph -> F// x ( ( ps -> ch ) /\ ( ch -> ps ) ) ) |
8 |
|
dfbi2 |
|- ( ( ps <-> ch ) <-> ( ( ps -> ch ) /\ ( ch -> ps ) ) ) |
9 |
8
|
bj-nnfbii |
|- ( F// x ( ps <-> ch ) <-> F// x ( ( ps -> ch ) /\ ( ch -> ps ) ) ) |
10 |
7 9
|
sylibr |
|- ( ph -> F// x ( ps <-> ch ) ) |