Step |
Hyp |
Ref |
Expression |
1 |
|
bj-nnfim |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ph -> ps ) ) |
2 |
|
bj-nnfim |
|- ( ( F// x ps /\ F// x ph ) -> F// x ( ps -> ph ) ) |
3 |
2
|
ancoms |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ps -> ph ) ) |
4 |
|
bj-nnfan |
|- ( ( F// x ( ph -> ps ) /\ F// x ( ps -> ph ) ) -> F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
6 |
|
dfbi2 |
|- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
7 |
6
|
bicomi |
|- ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( ph <-> ps ) ) |
8 |
7
|
bj-nnfbii |
|- ( F// x ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> F// x ( ph <-> ps ) ) |
9 |
5 8
|
sylib |
|- ( ( F// x ph /\ F// x ps ) -> F// x ( ph <-> ps ) ) |