Metamath Proof Explorer


Theorem bj-nnfead

Description: Nonfreeness implies the equivalent of ax5ea , deduction form. (Contributed by BJ, 2-Dec-2023)

Ref Expression
Hypothesis bj-nnfead.1
|- ( ph -> F// x ps )
Assertion bj-nnfead
|- ( ph -> ( E. x ps -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 bj-nnfead.1
 |-  ( ph -> F// x ps )
2 bj-nnfea
 |-  ( F// x ps -> ( E. x ps -> A. x ps ) )
3 1 2 syl
 |-  ( ph -> ( E. x ps -> A. x ps ) )