Metamath Proof Explorer


Theorem bj-nnfeai

Description: Nonfreeness implies the equivalent of ax5ea , inference form. (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfeai.1
|- F// x ph
Assertion bj-nnfeai
|- ( E. x ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 bj-nnfeai.1
 |-  F// x ph
2 bj-nnfea
 |-  ( F// x ph -> ( E. x ph -> A. x ph ) )
3 1 2 ax-mp
 |-  ( E. x ph -> A. x ph )