Metamath Proof Explorer


Theorem bj-nnfei

Description: Nonfreeness implies the equivalent of ax5e , inference form. (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfei.1
|- F// x ph
Assertion bj-nnfei
|- ( E. x ph -> ph )

Proof

Step Hyp Ref Expression
1 bj-nnfei.1
 |-  F// x ph
2 bj-nnfe
 |-  ( F// x ph -> ( E. x ph -> ph ) )
3 1 2 ax-mp
 |-  ( E. x ph -> ph )