Step |
Hyp |
Ref |
Expression |
1 |
|
bj-nnford.1 |
|- ( ph -> F// x ps ) |
2 |
|
bj-nnford.2 |
|- ( ph -> F// x ch ) |
3 |
|
19.43 |
|- ( E. x ( ps \/ ch ) <-> ( E. x ps \/ E. x ch ) ) |
4 |
1
|
bj-nnfed |
|- ( ph -> ( E. x ps -> ps ) ) |
5 |
2
|
bj-nnfed |
|- ( ph -> ( E. x ch -> ch ) ) |
6 |
4 5
|
orim12d |
|- ( ph -> ( ( E. x ps \/ E. x ch ) -> ( ps \/ ch ) ) ) |
7 |
3 6
|
syl5bi |
|- ( ph -> ( E. x ( ps \/ ch ) -> ( ps \/ ch ) ) ) |
8 |
1
|
bj-nnfad |
|- ( ph -> ( ps -> A. x ps ) ) |
9 |
2
|
bj-nnfad |
|- ( ph -> ( ch -> A. x ch ) ) |
10 |
8 9
|
orim12d |
|- ( ph -> ( ( ps \/ ch ) -> ( A. x ps \/ A. x ch ) ) ) |
11 |
|
19.33 |
|- ( ( A. x ps \/ A. x ch ) -> A. x ( ps \/ ch ) ) |
12 |
10 11
|
syl6 |
|- ( ph -> ( ( ps \/ ch ) -> A. x ( ps \/ ch ) ) ) |
13 |
|
df-bj-nnf |
|- ( F// x ( ps \/ ch ) <-> ( ( E. x ( ps \/ ch ) -> ( ps \/ ch ) ) /\ ( ( ps \/ ch ) -> A. x ( ps \/ ch ) ) ) ) |
14 |
7 12 13
|
sylanbrc |
|- ( ph -> F// x ( ps \/ ch ) ) |