| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-nnford.1 |  |-  ( ph -> F// x ps ) | 
						
							| 2 |  | bj-nnford.2 |  |-  ( ph -> F// x ch ) | 
						
							| 3 |  | 19.43 |  |-  ( E. x ( ps \/ ch ) <-> ( E. x ps \/ E. x ch ) ) | 
						
							| 4 | 1 | bj-nnfed |  |-  ( ph -> ( E. x ps -> ps ) ) | 
						
							| 5 | 2 | bj-nnfed |  |-  ( ph -> ( E. x ch -> ch ) ) | 
						
							| 6 | 4 5 | orim12d |  |-  ( ph -> ( ( E. x ps \/ E. x ch ) -> ( ps \/ ch ) ) ) | 
						
							| 7 | 3 6 | biimtrid |  |-  ( ph -> ( E. x ( ps \/ ch ) -> ( ps \/ ch ) ) ) | 
						
							| 8 | 1 | bj-nnfad |  |-  ( ph -> ( ps -> A. x ps ) ) | 
						
							| 9 | 2 | bj-nnfad |  |-  ( ph -> ( ch -> A. x ch ) ) | 
						
							| 10 | 8 9 | orim12d |  |-  ( ph -> ( ( ps \/ ch ) -> ( A. x ps \/ A. x ch ) ) ) | 
						
							| 11 |  | 19.33 |  |-  ( ( A. x ps \/ A. x ch ) -> A. x ( ps \/ ch ) ) | 
						
							| 12 | 10 11 | syl6 |  |-  ( ph -> ( ( ps \/ ch ) -> A. x ( ps \/ ch ) ) ) | 
						
							| 13 |  | df-bj-nnf |  |-  ( F// x ( ps \/ ch ) <-> ( ( E. x ( ps \/ ch ) -> ( ps \/ ch ) ) /\ ( ( ps \/ ch ) -> A. x ( ps \/ ch ) ) ) ) | 
						
							| 14 | 7 12 13 | sylanbrc |  |-  ( ph -> F// x ( ps \/ ch ) ) |