Metamath Proof Explorer


Theorem bj-sbievwd

Description: Variant of sbievw . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Hypotheses bj-sbievwd.nf0
|- ( ph -> A. x ph )
bj-sbievwd.nf
|- ( ph -> F// x ch )
bj-sbievwd.is
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion bj-sbievwd
|- ( ph -> ( [ y / x ] ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 bj-sbievwd.nf0
 |-  ( ph -> A. x ph )
2 bj-sbievwd.nf
 |-  ( ph -> F// x ch )
3 bj-sbievwd.is
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
4 sb6
 |-  ( [ y / x ] ps <-> A. x ( x = y -> ps ) )
5 1 2 3 bj-equsalvwd
 |-  ( ph -> ( A. x ( x = y -> ps ) <-> ch ) )
6 4 5 syl5bb
 |-  ( ph -> ( [ y / x ] ps <-> ch ) )