Description: Variant of sbievw . (Contributed by BJ, 7-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-sbievwd.nf0 | |- ( ph -> A. x ph ) |
|
bj-sbievwd.nf | |- ( ph -> F// x ch ) |
||
bj-sbievwd.is | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
||
Assertion | bj-sbievwd | |- ( ph -> ( [ y / x ] ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbievwd.nf0 | |- ( ph -> A. x ph ) |
|
2 | bj-sbievwd.nf | |- ( ph -> F// x ch ) |
|
3 | bj-sbievwd.is | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
4 | sb6 | |- ( [ y / x ] ps <-> A. x ( x = y -> ps ) ) |
|
5 | 1 2 3 | bj-equsalvwd | |- ( ph -> ( A. x ( x = y -> ps ) <-> ch ) ) |
6 | 4 5 | syl5bb | |- ( ph -> ( [ y / x ] ps <-> ch ) ) |