Metamath Proof Explorer


Theorem bj-ssbid1ALT

Description: Alternate proof of bj-ssbid1 , not using sbequ1 . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ssbid1ALT
|- ( ph -> [ x / x ] ph )

Proof

Step Hyp Ref Expression
1 ax12v
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )
2 1 equcoms
 |-  ( y = x -> ( ph -> A. x ( x = y -> ph ) ) )
3 2 com12
 |-  ( ph -> ( y = x -> A. x ( x = y -> ph ) ) )
4 3 alrimiv
 |-  ( ph -> A. y ( y = x -> A. x ( x = y -> ph ) ) )
5 df-sb
 |-  ( [ x / x ] ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) )
6 4 5 sylibr
 |-  ( ph -> [ x / x ] ph )