Step |
Hyp |
Ref |
Expression |
1 |
|
df-sb |
|- ( [ x / x ] ph <-> A. y ( y = x -> A. x ( x = y -> ph ) ) ) |
2 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
3 |
2
|
imim2i |
|- ( ( y = x -> A. x ( x = y -> ph ) ) -> ( y = x -> ( x = y -> ph ) ) ) |
4 |
3
|
alimi |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> A. y ( y = x -> ( x = y -> ph ) ) ) |
5 |
|
pm2.21 |
|- ( -. y = x -> ( y = x -> ph ) ) |
6 |
|
equcomi |
|- ( y = x -> x = y ) |
7 |
6
|
imim1i |
|- ( ( x = y -> ph ) -> ( y = x -> ph ) ) |
8 |
5 7
|
ja |
|- ( ( y = x -> ( x = y -> ph ) ) -> ( y = x -> ph ) ) |
9 |
8
|
alimi |
|- ( A. y ( y = x -> ( x = y -> ph ) ) -> A. y ( y = x -> ph ) ) |
10 |
|
ax6ev |
|- E. y y = x |
11 |
|
19.23v |
|- ( A. y ( y = x -> ph ) <-> ( E. y y = x -> ph ) ) |
12 |
11
|
biimpi |
|- ( A. y ( y = x -> ph ) -> ( E. y y = x -> ph ) ) |
13 |
9 10 12
|
mpisyl |
|- ( A. y ( y = x -> ( x = y -> ph ) ) -> ph ) |
14 |
4 13
|
syl |
|- ( A. y ( y = x -> A. x ( x = y -> ph ) ) -> ph ) |
15 |
1 14
|
sylbi |
|- ( [ x / x ] ph -> ph ) |