Metamath Proof Explorer


Theorem bj-substw

Description: Weak form of the LHS of bj-substax12 proved from the core axiom schemes. Compare ax12w . (Contributed by BJ, 26-May-2024) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-substw.is
|- ( x = t -> ( ph <-> ps ) )
Assertion bj-substw
|- ( E. x ( x = t /\ ph ) -> A. x ( x = t -> ph ) )

Proof

Step Hyp Ref Expression
1 bj-substw.is
 |-  ( x = t -> ( ph <-> ps ) )
2 1 pm5.32i
 |-  ( ( x = t /\ ph ) <-> ( x = t /\ ps ) )
3 2 exbii
 |-  ( E. x ( x = t /\ ph ) <-> E. x ( x = t /\ ps ) )
4 19.41v
 |-  ( E. x ( x = t /\ ps ) <-> ( E. x x = t /\ ps ) )
5 3 4 bitri
 |-  ( E. x ( x = t /\ ph ) <-> ( E. x x = t /\ ps ) )
6 1 biimprcd
 |-  ( ps -> ( x = t -> ph ) )
7 6 alrimiv
 |-  ( ps -> A. x ( x = t -> ph ) )
8 5 7 simplbiim
 |-  ( E. x ( x = t /\ ph ) -> A. x ( x = t -> ph ) )