Description: Weak form of the LHS of bj-substax12 proved from the core axiom schemes. Compare ax12w . (Contributed by BJ, 26-May-2024) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-substw.is | |- ( x = t -> ( ph <-> ps ) ) |
|
Assertion | bj-substw | |- ( E. x ( x = t /\ ph ) -> A. x ( x = t -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-substw.is | |- ( x = t -> ( ph <-> ps ) ) |
|
2 | 1 | pm5.32i | |- ( ( x = t /\ ph ) <-> ( x = t /\ ps ) ) |
3 | 2 | exbii | |- ( E. x ( x = t /\ ph ) <-> E. x ( x = t /\ ps ) ) |
4 | 19.41v | |- ( E. x ( x = t /\ ps ) <-> ( E. x x = t /\ ps ) ) |
|
5 | 3 4 | bitri | |- ( E. x ( x = t /\ ph ) <-> ( E. x x = t /\ ps ) ) |
6 | 1 | biimprcd | |- ( ps -> ( x = t -> ph ) ) |
7 | 6 | alrimiv | |- ( ps -> A. x ( x = t -> ph ) ) |
8 | 5 7 | simplbiim | |- ( E. x ( x = t /\ ph ) -> A. x ( x = t -> ph ) ) |