Metamath Proof Explorer


Theorem bj-sylget2

Description: Uncurried (imported) form of bj-sylget . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-sylget2
|- ( ( A. x ( ph -> ps ) /\ ( E. x ps -> ch ) ) -> ( E. x ph -> ch ) )

Proof

Step Hyp Ref Expression
1 bj-sylget
 |-  ( A. x ( ph -> ps ) -> ( ( E. x ps -> ch ) -> ( E. x ph -> ch ) ) )
2 1 imp
 |-  ( ( A. x ( ph -> ps ) /\ ( E. x ps -> ch ) ) -> ( E. x ph -> ch ) )