Metamath Proof Explorer


Theorem bj-wnf1

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf1
|- ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 bj-modal4e
 |-  ( E. x E. x ph -> E. x ph )
2 hba1
 |-  ( A. x ps -> A. x A. x ps )
3 1 2 imim12i
 |-  ( ( E. x ph -> A. x ps ) -> ( E. x E. x ph -> A. x A. x ps ) )
4 19.38
 |-  ( ( E. x E. x ph -> A. x A. x ps ) -> A. x ( E. x ph -> A. x ps ) )
5 3 4 syl
 |-  ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) )