Metamath Proof Explorer


Theorem bj-wnf2

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf2
|- ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 hbe1
 |-  ( E. x ph -> A. x E. x ph )
2 bj-eximcom
 |-  ( E. x ( E. x ph -> A. x ps ) -> ( A. x E. x ph -> E. x A. x ps ) )
3 hbe1a
 |-  ( E. x A. x ps -> A. x ps )
4 1 2 3 syl56
 |-  ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) )