Description: When ph is substituted for ps , this statement expresses nonfreeness in the weak form of nonfreeness ( E. -> A. ) . Note that this could also be proved from bj-nnfim , bj-nnfe1 and bj-nnfa1 . (Contributed by BJ, 9-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-wnfnf | |- F// x ( E. x ph -> A. x ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-wnf2 | |- ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) ) |
|
2 | bj-wnf1 | |- ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) ) |
|
3 | df-bj-nnf | |- ( F// x ( E. x ph -> A. x ps ) <-> ( ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) ) /\ ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- F// x ( E. x ph -> A. x ps ) |